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ABSTRACT 

For successful risk management of large-scale 
geologic carbon storage (GCS), it is crucial to 
detect leakage of brine and/or CO2 from a 
storage reservoir through unknown leakage 
pathways (e.g., abandoned wells and faults) as 
early as possible, and to determine the leak’s 
impact on the environment. We are currently 
developing a monitoring and inverse modeling 
framework for early leakage detection, which 
uses anomalies in monitoring data on pressure-
driven processes—such as pressure measure-
ments from monitoring wells within and above 
the storage reservoir, as well as  surface-defor-
mation InSAR data—as early signals of brine 
and/or CO2 leakage through unknown leakage 
pathways. In a study of idealized GCS scenarios, 
we have demonstrated the strong sensitivity of 
pressure and deformation anomalies (i.e., the 
differences between leakage and no-leakage 
scenarios) to the location and permeability of 
potential leakage pathways, and we have 
successfully detected leakage pathways and 
calibrated their permeabilities using the 
approach of modeling and jointly inverting 
pressure and surface deformation data. However, 
noise in monitoring data (large random errors or 
non-normal errors) and drift in pressure 
transducers (systematic errors) may lower 
detectability (due to the increased uncertainty 
they cause), and even lead to failure of leakage 
detection and parameter estimation. In addition, 
uncertainties in measured or presumably known 
hydrogeological properties of the storage system 
may also increase the difficulty of identifying 
leakage pathways.  
 
Here, we use iTOUGH2 to examine the effect of 
various data uncertainties on the accuracy of 

detection and estimation, and discuss strategies 
for enhancing detectability and reducing the 
impact of those uncertainties. 

INTRODUCTION 

For geologic carbon sequestration (GCS) to have 
a sizable effect on mitigating climate change, 
large volumes of CO2 must be injected into 
subsurface reservoirs (Benson and Cole, 2008). 
However, large-scale CO2 injection may result 
in a substantial increase in pressure within the 
storage formation and heighten the potential 
risks of GCS (Zhou et al., 2010). Brine or CO2 
may leak through unknown high-permeability 
leakage pathways (e.g., abandoned wells and 
faults) within the area of influence. In addition, 
increased pore pressure in the storage reservoir 
could induce geomechanical alteration of the 
reservoir and its surroundings, e.g., creating new 
fractures or reactivating larger faults (Rutqvist, 
2012). If these changes occur in the cap rock or 
overburden, they could become new leakage 
pathways for brine or CO2, potentially resulting 
in localized deformation (in addition to injec-
tion-induced deformation). If such leakage 
events cannot be properly assessed, GCS might 
cause undesirable environmental and safety 
consequences, and these events might ultimately 
prevent future deployment of GCS. Therefore, it 
is essential to the success of GCS for us to have 
the ability to detect brine or CO2 leakage from 
the storage reservoir through high-permeability 
pathways, predict potential risk profiles, and 
manage the risks as early as possible.  
 
We are currently developing a monitoring and 
inverse modeling framework for early leakage 
detection, using multiple complementary data 
sources, such as pressure buildups in monitoring 
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wells within and above the storage reservoir and 
surface-deformation data (e.g., Interferometric 
Synthetic Aperture Radar, InSAR). Within this 
framework, potential leakage pathways are 
identified and located as early as possible by 
inverse modeling of anomalies in monitoring 
data, and the time-dependent likelihoods of CO2 
leakage through the identified pathways are 
predicted using calibrated models. Unlike 
existing leakage-detection techniques, this 
framework will help with early detection and 
thereby allow time for risk mitigation and 
management in advance of actual CO2 leakage.  
 
In a recent study of idealized GCS scenarios 
(Jung et al., 2012), we demonstrated the strong 
sensitivity of pressure and deformation anoma-
lies (i.e., the differences between leakage and 
no-leakage scenarios) to the location and 
permeability of potential leakage pathways, and 
we have successfully detected model leakage 
pathways and calibrated their permeabilities 
using the approach of modeling and jointly 
inverting pressure and surface deformation data. 
However, the monitoring data available in 
practical applications may not always be ideal, 
and such data will likely contain errors that may 
not automatically be accounted for in the 
calibrated model. For instance, noise in monitor-
ing data (large random errors or non-normal 
errors) and instrument drift in pressure transduc-
ers (systematic errors) may increase uncertain-
ties in parameter estimation and even lead to 
failure of leakage detection. In addition, 
hydrogeological properties obtained from other 
tests or sources and considered as known 
parameters may not be error-free, and these 
uncertainties in the hydrogeological properties 
of the storage system can increase the difficulty 
of identifying leakage pathways. Therefore, it is 
important to assess the impact of data uncer-
tainty on identifying leakage pathways in GCS 
systems and estimating their hydrogeological 
properties by inverse modeling. 
 
In this paper, we briefly introduce the concept of 
early leakage detection, discuss the sensitivity of 
pressure monitoring for leakage detection, and 
demonstrate the feasibility of identifying and 
estimating leakage pathways (and their 
hydrogeological properties) by inverse modeling 
in an idealized monitoring scenario. Then, we 

examine the effect of various data uncertainties 
on the accuracy of detection and estimation. For 
simplicity here, we limit our discussion to using 
only pressure data from monitoring wells.   

PRESSURE-BASED EARLY DETECTION 
FRAMEWORK FOR CO2 LEAKAGE 
FROM STORAGE RESERVOIRS 

Our early leakage detection framework for GCS 
is based on the idea of (1) using the signals of 
fast-traveling pressure-buildup waves (caused by 
CO2 injection into the storage reservoir) and 
pressure-induced surface deformation, and their 
signal anomalies associated with seal imperfec-
tions (e.g., leaky faults, fractures, abandoned 
wells) to locate, identify, and quantify these seal 
imperfections; (2) predicting the fronts of 
slower-migrating CO2 plumes by flow modeling, 
with the locations and hydrologic properties of 
the detected seal imperfections accounted for; 
and (3) comparing the two time-evolving 
inverse- and forward-modeling processes to 
predict the time-dependent likelihood of CO2 

leakage through these features, and to guide 
mitigation measures to prevent leakage from 
happening if such likelihood exists.  
 
The core of this approach is to jointly utilize 
fast-propagating pressure data and high-spatial-
resolution surface deformation data to improve 
the detectability of leakage signals and reduce 
the uncertainties in locating leakage pathways. 
Time-dependent pressure buildups caused by 
CO2 injection propagate much faster than the 
CO2 plume migrates, and therefore the anoma-
lies in observed pressure buildups, which are 
induced by brine leakage through leakage path-
ways, may also be revealed quickly. However, 
only a few monitoring wells may be available (if 
any), and they may not always be conveniently 
located close to leakage pathways, such that they 
could sensitively detect anomalies in pressure 
buildups. Therefore, surface deformation InSAR 
data, which can measure ground displacement 
on the order of centimeters or millimeters and 
provide dense spatial information on the scale of 
kilometers, might be able to add useful comple-
mentary information for detecting leakage 
pathways.  



 

 - 3 - 

METHODOLOGY 

Model Setup and Parameters 
We consider a simplified conceptual model, 
which represents a storage system consisting of 
a target storage formation, a cap rock, and an 
overlying monitoring formation, as shown in 
Figure 1. The injection well (IW) is located at 
the center of the model domain [0 km, 0 km], 
and the leaky well (LW) is located 2 km away 
from the injection well [2 km, 0 km]. Resident 
brine is injected into the storage reservoir at a 
constant rate, Q =5700 m3 day!1, and pressure 
perturbations arising from fluid injection and 
brine leakage are observed at monitoring wells. 
The radius of the injection, the leaky well, and 
the monitoring wells is 0.15 m. The effective 
permeability of the leaky well is Lk = 10-10 m2. 
The following properties are used as the 
formation parameters of the storage system: 
aquifer (storage and overlying formation) 
thickness of B = 60 m, aquifer permeability of k 
= 10!13 m2, aquifer pore compressibility of !p = 
4.5 " 10!10 Pa!1, aquitard (caprock formation) 
thickness of B´ = 100 m, aquitard permeability 
of k´ = 10!18 m2, aquitard pore compressibility of 
!´p = 9.0 " 10!10 Pa!1, and water compressibility 
of !w = 3.5 " 10!10 Pa!1. Accordingly, the 
hydraulic conductivities of the aquifers and the 
aquitard are 0.20 m day!1 and 0.20 " 10!5 m 
day!1, respectively, assuming brine density of " 
= 1200 kg m!3, gravity acceleration of g = 9.8 m 
s!2, and water viscosity of µ = 0.5"10!3 Pa s. The 
specific storativity of the aquifers is calculated 
using )( pws gS !!"# += =1.88 " 10!6 m!1, where 
the aquifer’s porosity is # = 0.2. The specific 
storativity of the aquitard is calculated using 

)(' pws gS !!"# $+=$ = 1.47"10!6 m!1, where the 
aquitard porosity is #' = 0.1. These formation 
parameters are based on previous studies on 
large-scale injection of CO2 (Birkholzer et al., 
2009) and water (Zhou et al., 2009). 

Computational Methods 
To calculate pressure buildups in the storage 
system, we use an efficient semi-analytical 
solution (Cihan et al., 2011), assuming single-
phase water flow. This solution can calculate 
pressure perturbation and fluid flow that are 
induced by large-scale fluid injection in 
multilayer systems (e.g., multiple aquifers and  

 
Figure 1. Schematics of a simplified storage system 

of a target storage reservoir, a caprock, 
and an overlying aquifer, with an injection 
well and a leaky well (2 km away). 

alternating aquitards), combining the effect of 
diffuse leakage through aquitards and/or focused 
leakage through leaky wells. The fluid flow in 
the system is described by coupled one-
dimensional horizontal flow in aquifers, vertical 
flow in aquitards, and Darcy-type vertical flow 
in leaky wells. Further details on this analytical 
solution can be found in Cihan et al. (2011). 
 
For inverse modeling, we use iTOUGH2-PEST 
(Finsterle, 2011). iTOUGH2-PEST is an 
extended version of iTOUGH2, a computer 
program for parameter estimation, sensitivity 
analysis, and uncertainty propagation analysis 
(Finsterle, 2007), and uses the PEST protocol 
(Doherty, 2007, 2008) as a way to communicate 
between application models and iTOUGH2. 
iTOUGH2 was originally developed for use with 
the TOUGH2 forward simulator (Pruess, 1999). 
However, with the iTOUGH2-PEST module, 
iTOUGH2 can be used as a universal optimiza-
tion code for non-TOUGH2 models. 

DETECTION OF PRESSURE ANOMALIES  

Large volumes of CO2 injection into the storage 
formation may induce significant pressure 
buildups. Hydraulic communication between the 
storage and the overlying formation via diffuse 
leakage through the cap rock may also influence 
pressures in both formations. Such pressure 
perturbations in GCS systems can be simulated 
using appropriate models, e.g., Cihan et al. 
(2011). Therefore, for an idealized system with 
homogenous aquifers and aquitards, the 
difference between the measured pressures at 
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monitoring wells and the calculated values based 
on known hydrogeological properties of the 
storage system can be attributed to the leakage 
through unknown leakage pathways. The 
detectability of this leakage signal greatly 
depends on various formation parameters, as 
well as the effective permeability of the leakage 
pathways. 
  
To determine how sensitively the pressure at 
monitoring wells changes in response to brine 
leakage through a leaky well, we compute the 
absolute difference of pressures measured with 
and without the presence of the leaky well (=

wowwow hhh !"=! ). While the sensitivity of the 
calculated wowh !"  to the parameters varied with 
time and space, the most influential parameter 
on the whole was found to be the permeability of 
the cap rock (Jung et al., 2012). We therefore 
present the result for three different values of 
aquitard permeability (k´ = 10-19, 10-18, and 10-17 
m2). 
 
Figure 2 shows the time-dependent contour lines 
of (a) wowh !" = 1 m and (b) wowh !" = 0.1 m in 
the overlying aquifer. Here, the wowh !"  values 
might be assumed to be the minimum pressure 
buildup to be considered as anomalies induced 
by high-permeability leakage pathways in 
different conditions. For instance, wowh !" = 1 m 
may be used as the detection limit when noises 
in monitoring data are rather large, and wowh !" = 
0.1 m when noises are small. In both cases, the 
contour lines are centered around the leaky well 
located at [2 km, 0 km]. In other words, wowh !"  
in Figs. 2a and 2b is higher than 1 m and 0.1 m, 
respectively, inside the contour line at each time. 
This means that the detectability of pressure 
anomalies at monitoring wells would be highly 
dependent on the location of a monitoring well 
relative to a leaky well.  
 
Similarly, the time-dependent contour lines of 

wowh !" = 0.1 m in the overlying formation are 
shown in Fig. 3 for the case of k´ = 10-17 m2. The 
area in which the anomalies can be detected 
increases with time, but the area is significantly 
smaller for the higher-permeability case (k´ = 10-

17 m2, Fig. 3) than that in the base case (k´ = 10-

18 m2, Fig. 2b), particularly for late times. An 
important implication of this result is that early 
leakage detection is especially critical if the 
sealing layer has a relatively high permeability. 
Unless leakage is detected early enough at 
monitoring wells, it might be difficult to discern 
leakage signals induced by the presence of high-
permeability conduits, such as faults and 
abandoned boreholes from those by a slow, 
diffuse process. That is, the accuracy of 
hydrogeologic parameters (e.g., the cap-rock 
permeability), which is usually determined by 
other survey techniques and assumed to be 
known, might have a large impact on parameter 
estimation using inverse modeling. (This effect 
is discussed later.) The difference between the 
lower-permeability case (k´ = 10-19 m2) and the 
base case (k´ = 10-18 m2) was relatively minor, 
implying diffuse leakage through the caprock is 
not substantial for the aquitard permeability of 
up to k´ = 10-18 m2. 
 

 
Figure 2. Time-dependent contour lines of (1) 

wowh !" = 1 m and (b) wowh !" = 0.1 m in 
the overlying formation for the base case 
of k´ = 10-18 m2. 
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Figure 3. Time-dependent contour lines of wowh !"
= 0.1 m in the overlying formation for the 
higher-permeability case of k´ = 10-17 m2. 

PARAMETER ESTIMATION: IDEALIZED 
MONITORING SCENARIO 

This section presents an idealized monitoring 
scenario and examines the ability of identify-
ing/locating a leaky well using inverse modeling 
against pressure data, and calibrating the effec-
tive permeability. In addition to the injection 
well, two monitoring wells (MW1 and MW2) 
are available for pressure observation in both the 
storage and the overlying formation, and they 
are located at [1.5 km, 1.5 km] and [-1.5 km, 1.5 
km], respectively. The pressure data collected 
from these monitoring wells contain only small 
amount of instrument measurement noise (zero-
mean Gaussian noises with standard deviation of 
0.0014 bar, which is twice that of the instrument 
resolution). Here, we assume that any natural 
background fluctuations due to atmospheric-
pressure changes, earth tides, and ocean tides 
can be filtered out from the data. We use the 
pressure data measured at the monitoring wells 
in the storage and the overlying formation and at 
the injection well in the overlying formation, 
and test four different initial guesses of the leaky 
well location at [±1 km, ±1 km] for estimating 
the leaky well location and permeability.  
 
The match between the computed and the 
measured pressure buildups was excellent, and 
all the residuals appeared random (see Fig. 4). 
The location and effective permeability of the 
leaky well were also successfully estimated 
using iTOUGH2-PEST, regardless of the initial 
guesses away from the actual location. Since the 

inversion accuracy could be affected by the 
configuration of available monitoring wells 
(Jung et al., 2012), we use the same setup in the 
following section to explore the effect of noise 
in data and model structure.  

PARAMETER ESTIMATION: EFFECT OF 
RANDOM AND SYSTEMATIC ERRORS 

Various errors are introduced into the model and 
synthetic data (see Table 1) to examine their im-
pact on parameter estimation: (1) the cap-rock 
permeability derived from other hydraulic tests 
is overestimated by 20% (k´ = 1.2 " 10-18 m2), (2) 
the drift in the pressure transducer at MW1 in 
the overlying formation linearly increases over 
time (drift rate = 0.001 m d-1), and (3) the pres-
sure measured in the storage formation exhibits 
pressure-dependent random fluctuations (zero-
mean random noises with heterogeneous stand-
ard deviation, which increases up to 0.14 bar).  
 
To enhance the fit between the measured and 
calculated pressures, we incrementally increased 
the number of parameters considered. At first, 
similar to the idealized monitoring case, only the 
location and permeability of the leaky well were 
estimated. In our second attempt, the permeabil-
ity of the sealing caprock was included as one of 
the parameters to be estimated. In the third 
calibration, the drift rate of the pressure sensor at 
MW1 in the overlying formation was also 
parameterized and estimated along with the 
other parameters. Finally, heteroscedasticity in 
the monitoring data was also considered in the 
calibration.  
 

 
Figure 4. Comparison between the measured and 

calculated pressures in the overlying 
formation. 
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Table 1. Various random and systematic errors intro-
duced into the model and the data. 

Error Description Error Type 

• Wrong caprock permeabil-
ity 

Systematic 
modeling error 

• Drift in MW1 pressure 
transducer in the overlying 
formation 

Systematic 
measurement 
error 

• Pressure-dependent meas-
urement errors  
in the storage formation 

Heteroscedastic 
random error 

 
Figure 5 shows the measured against calculated 
pressures in the storage (SF) and the overlying 
formation (OF). The estimated parameters in 
each inversion are summarized in Table 2. As 
shown in Fig. 5a, when simply the location and 
permeability of the leaky well are calibrated, the 
residuals (the deviations from the unit-slope 
line) at MW2 and IW in the overlying formation 
are significantly large, indicating that the model 
failed to account for the true system, and that 
some systematic errors influenced the inversion 
results. The observation that the deviations were 
greater when the distance between the monitor-
ing point and the leaky well was larger suggests 
that the initial value used for the aquitard 
permeability was erroneous.  
 
In the second trial, the permeability of the cap 
rock was parameterized and the fit was then 
significantly improved (see Fig. 5b). The stand-
ard deviation of the estimated parameters also 
largely decreased. However, even if the degree 
of deviation was a lot smaller than that in Fig. 5a, 
all the pressures calculated in the overlying 
formation still show systematic deviations, 
suggesting that a more refined model is required. 
Another interesting observation here is that the 
estimated leaky well location is almost identical 
with the location of MW1. If the errors in the 
model are not carefully analyzed, this erroneous 
estimate may result in biased conclusions (e.g., a 
leak in MW1 itself).  
 
In the third inversion, the drift of pressure sensor 
in MW1 was included as one of the parameters 
estimated. The residuals of all the pressures 
measured in the overlying formation appeared 

random (see Fig. 5c), and the estimated parame-
ters were reasonably acceptable (see Table 2).  
 
Based on the residual analysis, the residuals of 
the pressures measured in the storage formation 
also appeared random, but the deviations 
increased with pressure. In the final inversion, 
the effect of these heteroscedastic random errors 
on the parameter estimation was further assessed. 
To stabilize the errors and make the data more 
normal distribution-like, the Box-Cox transfor-
mation (Box and Cox, 1964), which is a family 
of power transformations and alleviates 
heteroscedasticity in the error, was applied to the 
measured and simulated data.  
 
The heterogeneity in the Box-Cox transformed 
residuals was significantly alleviated (see Fig. 
5d), but in this monitoring scenario, this attempt 
did not necessarily improve the accuracy of the 
parameter estimation.  

CONCLUDING REMARKS 

Detection of CO2 or brine leakage depends on 
the sensitivity of system responses (monitoring 
data) to leakage pathways. Our study shows that 
pressure-based monitoring data are sensitive to 
leakage pathway properties and change with 
time and space, therefore allowing parameter 
estimation through inversion. While large 
random or systematic errors commonly occur in 
both the model and the data which can lead to 
biased parameter estimates, the parameterization 
of some of these errors in the inverse model 
greatly helps in mitigating the misfit between the 
observed and calculated system responses, and 
improves the estimation process.  
 
In contrast to modeling with the simplified 
geometric conditions in our model, finding the 
sources of systematic or non-Gaussian errors 
may not always be possible for most practical 
cases. However, a detailed residual analysis on 
multiple complementary data might enable the 
modeler to identify such errors. More details on 
the error-handling strategies and capabilities for 
mitigating the impact of systematic or non-
Gaussian random errors, particularly using 
iTOUGH2, can be found in Finsterle and Zhang 
(2011).  
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Figure 5. Measured vs. calculated pressures in the 

cases where (b) k´, (c) drift, and (d) Box-
Cox parameter are incrementally included 
in the parameters calibrated, in addition to 
(a) the case with only the location and 
permeability of the leaky well calibrated. 
The solid line is the unit-slope line. 
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